Future climate and energy policy - a Strategy for long-term EU greenhouse gas emissions reductions

Fields marked with * are mandatory.

Introduction

Climate change is happening and without further global action to mitigate it, temperatures will rise within this century well beyond a 2°Celsius compared to pre-industrial times. This will have major impacts on our economies and societies. In order to prevent this, 178 global partners cooperating under the United Nations Framework Convention on Climate Change (UNFCCC) have ratified the Paris Agreement that calls upon all countries to keep global temperature increase to well below 2°C, and to pursue efforts to limit the increase to 1.5°C above pre-industrial levels. Parties to the Paris Agreement are to communicate by 2020 their long-term low greenhouse gas emission development strategies.

In March, the European Council invited the Commission to present a proposal for a strategy for long-term EU greenhouse gas emissions reductions in accordance with the Paris Agreement, taking into account the national plans. The European Parliament made a similar request.

The EU is on track to achieve its <u>2020 targets</u> and is currently putting in place policies to reduce greenhouse gas emissions by at least 40% in 2030 and achieve high level of ambition in energy efficiency and renewable energy (the so called energy and climate framework for 2030). The policies, legislative instruments and support programmes from the European budget will put the EU on a trajectory compatible with the Paris Agreement, but further measures are needed for the time after 2030.

The EU has currently an objective in the context of necessary reductions by developed countries as a group, to reduce emissions by 80-95% by 2050 compared to 1990 levels.

Delivering the Paris Agreement will require a worldwide transition towards a global economy that will not further affect the climate in the second half of the century.

To pursue these latter objectives, the EU's long term strategy should put forward a vision for the midcentury and how the European Union can help protect the planet, defend its people and empower its economy. The EU's new long term strategy should describe economy-wide pathways with various options for decarbonisation and their implications on technology choices and socioeconomic factors.

The strategy will reflect on a long-term vision of a modern European economy working for all Europeans. Studies and stakeholder input will contribute to the formulation of this vision and help explain the choices to be made. The strategy should reflect on the essential opportunities and challenges stemming from the long-term decarbonisation and clean energy transition of the EU:

- modernising the economy;
- improving citizens' quality of life;
- ensuring fair transition and tackling social challenges;
- reindustrialising Europe through digital, circular and low carbon innovation and clean mobility;
- promoting free, fair and sustainable global competition for markets, trade and investments; and
- maintaining the EU's global leadership position on key geostrategic and security issues.

The strategy will analyse cost-efficient scenarios towards decarbonisation in line with the Paris Agreement underpinned by holistic analysis of transition options across all key sectors of the economy. This includes a wide variety of sectors, starting with the central role of energy, buildings, transport and mobility, industrial production and the provision of services, waste, agriculture and land-use, as well as the use of natural resources. It will examine the potential and implications of the deployment of innovative technologies, sectoral integration, and of facilitating alternative choices for consumers. It will examine implications for security of supply, investments, competitiveness and socio-economic factors, such as economic growth and job creation, also considering the impacts on citizens, businesses. Regions that stand to be negatively affected by decarbonisation should be supported making this transition just and socially fair.

The visions and reflections of stakeholders involved from all sectors of the economy and society on how to reach the EU's ambition will be an important input into this process. Therefore, the European Commission is very much interested in your views on a strategy for long-term greenhouse gas emissions reductions for the European Union. Please take a moment to fill in our questionnaire. We welcome contributions from the general public, stakeholders and authorities alike. Your views will help to enrich our assessment of what the EU should do in order to meet its commitment under the Paris Agreement.

Guidance on the questionnaire

After a few introductory questions related to your general profile in section 1, the questionnaire has a number of questions in section 2.

To participate in the public consultation you are not obliged to fill in all questions. The different sections include questions on greenhouse gas reductions, the impact of consumers, the economic activity, energy, forests and land use, education and research, financing, meta trends, actors and adaptation to climate change. The final section is technical and more focussed on sectoral stakeholders (industry, transport, agriculture, land use).

Some questions are multiple choice questions. Other questions are open to which you can add if you want your comments. Please keep comments clear and concise because there is a limit on the number of characters you can enter.

If you want to express your views in more detail you can also upload a document with your views and insights.

As the results will be published on the Internet, please read the specific privacy statement attached to this consultation. It informs you about how your personal data and contribution will be dealt with. In the interest of transparency, if you are replying on behalf of an organisation, please register with the register of interest representatives if you have not already done so. Registering commits you to complying with a Code of Conduct. If you do not wish to register, your contribution will be treated and published together with those received from individuals.

General information about respondents

* In what capacity are you completing this questionnaire?

- as an individual in your personal capacity
- in your professional capacity or on behalf of an organisation

* Please give your name if replying as an individual/private person, otherwise give the name of your organisation:

Text of 3 to 100 characters will be accepted

smartEn

Email address:

frauke.thies@smarten.eu

* For individuals, country of residence; for professionals, headquarters and main country of operations:

Belgium

*Type of organisation (please select the answer option that fits best):

- Private enterprise
- Professional consultancy, law firm, self-employed consultant
- Trade, business or professional association
- Non-governmental organisation, platform or network
- Research and academia
- Social partners
- National, regional or local authority (mixed)
- Other

* If other, please specify:

Text of 3 to 100 characters will be accepted

European business association

Please indicate the economic sector you are active in (as an individual or as an organisation)

- Agriculture, Hunting and Forestry
- Financial Intermediation
- Fishing

- Real Estate, Renting and Business Activities
- Mining and Quarrying
- Public Administration and Defence;
- Manufacturing
- Education
- Electricity, Gas and Water Supply
- Health and Social Work
- Construction
- Other Community, Social and Personal Services
- Wholesale and Retail Trade:
- Activities of Private Households as Employers
- Hotels and Restaurants
- Extraterritorial Organisations and Bodies
- Transport, Storage and Communications
- Other

* If you are a civil society organisation or a public administration, please indicate your main area of focus or your area of competence:

Text of 3 to 100 characters will be accepted

Energy (decentralised, digital and decarbonised resources, interaction of demand and supply)

What size does you organisation have?

- Micro or small enterprise (10-49 persons employed)
- Medium-sized enterprise (50 249 persons employed)
- Large enterprise (250 or more persons employed)

If your organisation is registered in the Transparency Register, please give your Register ID number:

20 character(s) maximum

569379418624-07

If your organisation is not registered, you can register now.

* Please indicate your preference for the publication of your response on the Commission's website:

- Output the name given: I consent to publication of all information in my contribution and I declare that none of it is subject to copyright restrictions that prevent publication
- Anonymously: I consent to publication of all information in my contribution and I declare that none of it is subject to copyright restrictions that prevent publication
- Not at all please keep my contribution confidential (it will not be published, but will be used internally within the Commission)

(Please note that regardless the option chosen, your contribution may be subject to a request for access to documents under <u>Regulation 1049/2001</u> on public access to European Parliament, Council and Commission documents. In this case the request will be assessed against the conditions set out in the Regulation and in accordance with applicable <u>data protection rules</u>.)

Long term greenhouse gas emissions reductions

To achieve its temperature objectives, the Paris Agreement also includes a long term ambition to achieve a balance between emissions and removals of greenhouse gases by human activities in the second half of this century. Given that addressing climate change is a global challenge requiring all parties of the Paris Agreement to act, what do you think the EU should contribute to achieve the Paris Agreement's objectives:

- Reduce greenhouse gas emissions in the EU by 80% by 2050 compared to 1990 levels
- Reduce greenhouse gas emissions in the EU more, within the range of 80 to 95% by 2050 compared to 1990 levels
- Achieve already a balance between emissions and removals in the EU by 2050

In your opinion, what are the biggest opportunities and challenges

1000 character(s) maximum

To realise the European and international objectives of limiting climate change to well below 2°C, Europe must reduce its emissions as close to zero as possible by 2050.

While the energy sector is the main contributor to GHG emissions today, it represents enormous potentials to become carbon neutral by 2050. To this end, Europe should tap into the opportunities offered by digitalisation, decentralisation and consumer empowerment. This includes an integrated approach to electricity, heating and transport, with energy efficiency and electrification as the central drivers. To power this integrated system, the sector will depend on a decarbonised and distributed generation combined with flexibility from demand response, storage and intelligent system operation.

Consumers

Next to the deployment of available and forthcoming technologies, when looking at the long term, consumer choices also have a key role in achieving the decarbonisation of our economy. Please fill in this section based on your habits if you are an individual or, if you are from an organisation, considering the organisation practice.

In your opinion, where do you expect the largest changes to happen in your daily life in order to meet the climate change challenge?

- Housing
- Mobility
- Food
- Consumer goods and services

Housing and offices

Energy consumption

To which extent would you support the following options that allow reducing the energy consumption and related CO₂ emissions in buildings?

Improving further the energy performance (insulation, triple glazing, etc.) of your building?

- Yes, I already have done it
- Yes, as a priority
- Yes, but not as a priority
- No, I rent
- No, too expensive
- No, other reason
- No opinion / I do not know

Installing heating and water boilers that run on renewables?

- Yes, I already have done it
- Yes, as a priority
- Yes, but not as a priority
- No, I rent
- No, too expensive
- No, other reason
- No opinion / I do not know

Installing heating and cooling equipment and use electric appliances with the best energy performance label?

- Yes, I already have done it
- Yes, as a priority
- Yes, but not as a priority
- No, I rent
- No, too expensive
- No, other reason
- No opinion / I do not know

Buying carbon free electricity or generating your own renewable electricity?

- Yes, I already have done it
- Yes, as a priority
- Yes, but not as a priority
- No, I rent
- No, too expensive
- No, other reason
- No opinion / I do not know

Having a smart meter and consuming electricity mostly when prices are low?

- Yes, I already have done it
- Yes, as a priority
- Yes, but not as a priority
- No, for privacy concern

- No, I do not want to change my consumption habits
- No, other reason
- No opinion / I do not know

Domestic waste

Do you sort your waste (paper, plastics, glass, metal, glass, organic...)?

- Yes
- No
- I do not see the interest

What would make you increase the separation of waste (paper, plastics, glass, metal, glass, organic...)?

- Adapted infrastructure (containers, etc.)
- Awareness campaign
- Financial incentives such as deposit schemes
- Other

Do you think increased recycling and reuse are important to achieve greenhouse gas reductions?

- Yes
- No
- I do not know

Mobility

To which extent would you support the following options that allow reducing the energy consumption and related CO_2 emissions?

Buying a vehicle that does not run on petrol or diesel (for instance an electric car)?

- Yes
- Yes, but only if not more expensive than conventional petrol or diesel cars
- Yes, but only if sufficient refuelling infrastructure is available
- No

Considering using car sharing services?

- Yes
- Yes, but only if an easy to use and affordable service is in place
- No

For short trips, avoiding private car and rather using public transport?

- Yes
- Yes but only if an accessible and regular service is in place
- No, because they are too slow
- No, because it is too expensive
- No

For short trips, avoiding private car and rather using (electric) bike or other active mobility modes?

- Yes
- Yes, but only if proper bike lanes are in place
- No

For longer distance, avoiding flights or car whenever an alternative is available?

- Yes
- Yes, provided a convenient alternative is in place
- No, too slow
- No, too expensive
- No, other reason

Do you think better urban planning would reduce the use of private cars and reduce congestion in the urban areas?

- Yes
- Yes, if combined with better public transport
- Yes, but difficult to put in place
- No

Do you think using more IT tools such as tele-working or video-conferencing could reduce mobility needs?

- Yes
- Yes, to some extent
- No, as difficult to put in place
- No

Food

Food production, processing and delivery have an impact on greenhouse gas emissions and natural resources consumption.

Would you consider it important that further awareness raising is undertaken about the impact of various types of food consumption on climate?

- Yes
- No

Would you consider the impact of food on greenhouse gas emissions when buying it?

- Yes
- Yes, if information is available about the carbon intensity of food
- Not if more expensive
- No

Also taking into account the importance to have a balanced diet for health purposes, would you consider changing to a less carbon intensive food diet (e.g. reduce red meat consumption)?

- Yes
- 🔘 No

I would require more information before changing my diet

Consumer goods and services

The products/services you consume and the way they are produced also impact energy consumption and related greenhouse gas emissions.

Do you ever consider the impact on greenhouse gas emissions when buying and consuming a product or services?

- Yes I do so regularly
- Yes but I often lack the information to do so
- No, I don't consider this

Would you consider buying products and services from companies that produce their goods and services in a greenhouse gas neutral manner?

- Yes
- No, if more expensive
- No, other
- No opinion / I do not know

Your work and your economic sector

For both individuals and organisations, details on the economic sector should be provided in Section 1.

Employment and a socially fair transition

In the coming decades, the transition to a low carbon economy will impact even more how we work and how we produce goods and services. Which statements below correspond in your opinion to the impact of climate change and the low carbon transition in your working environment?

Do you expect your company to create or reduce jobs due to the low-carbon transition?

- Oreate
- Reduce
- No opinion / I do not know

What could affect your job most in the future?

- The low carbon transition
- Digitalisation
- Impact of globalisation
- Socio-economic policies (for instance fiscal policy)
- Other

Do you think you or the sector you are active in would benefit from training of staff in the context of the energy and low carbon economy transformation?

- Yes, to some extent
- No
- No opinion / I do not know

The impact of the low carbon transition on your sector

Do you consider the low carbon transition as an opportunity or as a challenge for your sector?

- An opportunity
- A challenge
- Both
- None
- No opinion / I do not know

Indicate by how much your sector could reduce greenhouse gas emissions by 2050 compared to today?

- It cannot reduce
- Up to half
- By more than half
- Can decarbonise entirely
- No opinion / I do not know

What would be the preferred route to reduce these emissions in your sector?

- Further electrify
- Use other low carbon fuels, like hydrogen
- Improve to the maximum energy efficiency
- Circular economy, including recycling and re-use
- Development of new products and business concepts
- Other
- No opinion / I do not know

* If other, please specify:

Text of 3 to 200 characters will be accepted

Electrification and sector coupling need to go along with new business models to smartly manage the interaction of supply and demand, so as to maximise system efficiency

Will you (or your sector) invest in new low-carbon technologies?

- Yes, as a priority
- Yes, but not as a priority
- No, it has already invested enough
- 🔘 No
- No opinion / I do not know

Do you think your sector could be further integrated with others so as to decrease emissions while increasing overall efficiency?

Yes

No

No opinion / I do not know

If your sector can be further integrated to others, please mention how and to which sector(s):

200 character(s) maximum

integration of electricity, heating, industry and transpor; further streamlining with additional sectors

Do you think the low carbon transition will lead the EU economy to:

- Modernise and reinforce its competitiveness
- Modernise, and reinforce its competitiveness, but only if non-EU countries and regions also engage in the transition towards a low carbon economy
- Lose competitiveness
- No opinion / I do not know

Do you think the low carbon transition can help the EU industry modernise and grow?

- Yes
- Yes, but only with public support
- Yes, but only if non-EU countries and regions also engage in the transition towards a low carbon economy
- No
- No opinion / I do not know

How can opportunities and challenges (in particular related to carbon intensive sectors or regions) be addressed? What key economic transformations should the EU pursue to achieve a low carbon and resilient economy?

1000 character(s) maximum

With the use of distributed demand-side flexibility and growing renewable energy resources, the energy transition offers the potential of value creation across the continent. In particular, energy consumers – including industrial and commercial users as well as citizen – can benefit from participating in the energy value chain. This requires the creation of open and fair markets that enable new business models, as well a fair distribution of taxes and network charges that rewards industrial, commercial and residential consumer engagement and supports a just and inclusive transition.

Energy

The energy system today is responsible for ca. 75% of the EU's greenhouse gases emissions and undergoes a rapid transition due to e.g. cost reduction of renewables, improvements of energy-efficiency and rapid development of new technologies (e.g. batteries) driven i.a. by policies put forward by the EU and its Member States. Accelerating this change will play a central role in the transition of our economy towards a carbon-neutral economy.

In the following table listing different energy technologies, please rank each option in the table below from 1 (important) to 5 (not important) on what role you think they will play in the clean energy transition (not all options need to be ranked)?

	1	2	3	4	5
Energy efficiency reducing the need to produce energy	۲	۲	۲	۲	۲
Renewable energy from wind, solar or hydro	۲	۲	۲	۲	۲
Other forms of renewable energy, like geothermal, wave or tidal	0	0	0	0	0
Nuclear energy	۲	0	0	۲	0
Fossil fuels with Carbon Capture and Sequestration	0	0	0	0	0
Solid biomass for heat and electricity production	۲	0	۲	۲	0
Advanced Liquid Biofuels	۲	0	۲	۲	0
Biogas from agricultural and domestic waste	0	۲	۲	0	0
Electricity storage (e.g. batteries)	۲	0	0	0	0
Hydrogen (produced in a carbon-neutral manner)	۲	۲	۲	۲	۲
E-fuels derived from hydrogen	۲	۲	۲	۲	0
Other	۲	0	0	0	0

* If other, please specify:

Text of 3 to 200 characters will be accepted

Demand Response must be a number one priority and is absent in the table. Digital technologies and services to manage the interaction of variable and flexible resources should also be included.

What are the biggest opportunities, including for the wider economy? What are the biggest challenges, including as regards public acceptance or the availability of land and natural resources, related to these future developments?

2000 character(s) maximum

The biggest opportunities are created by the smart interaction of the different digitally enabled technologies across the energy sector (incl. electricity, heating, transport and industry) to create an energy system that is efficient and resilient; i.e. combining consumer preferences with increasingly intermittent and distributed power generation and flexible resources like demand response and storage.

Increasing electrification, coupled with a full decarbonisation of electricity generation, will be the central driver for such a smart energy economy. Within this context, it will be most cost-effective to defer electricity consumption in time, be it in flexible industrial and commercial applications or for domestic equipment like heat pumps and electric vehicles. Technology innovation, automation and innovative services will support this development. The declining cost of electrical storage can significantly add to these potentials. A power conversion into hydrogen might be relevant for some industrial processes and heavy transport that cannot be served by electricity directly. In the long term, green hydrogen and/or other forms of long-term storage may play a role for seasonal storage to the extent that this will be required.

The role of Forests and Land Use

Today, EU's forests, agriculture and land absorb more CO₂ than they emit, which is referred to as the EU's sink. Forests and agriculture land produce renewable biomass that can be used to substitute other carbon intensive products or to produce bioenergy, which in turn reduce greenhouse gas emissions from fossil fuels and industrial processes. Depending on how this biomass is produced, this can impact the size of the EU's sink, as well impact other services delivered by agriculture and forest land including biodiversity and ecosystem services.

In the context of a long term strategy please rank each land-use activities in the table below from 1 (important) to 5 (not important) to indicate which are acceptable and can be important to reduce greenhouse gas emissions and increase CO_2 absorptions (not all options need to be ranked):

	1	2	3	4	5
Forest as a source for biomass for renewable energy	۲	0	۲	۲	0
Forest as a source of material for bio-based products	۲	۲	۲	۲	0
Forest as a carbon sink storing CO ₂	۲	0	۲	۲	\bigcirc
Agriculture as a source of feedstock for bio-based materials	۲	۲	۲	۲	0
Agriculture as a source for bio-energy	۲	۲	۲	۲	0
based on food crops	۲	۲	0	0	0
based on agricultural wastes	0	0	0	0	\bigcirc

based on woody biomass (e.g. perennials, woody and herbaceous crops, short rotation coppice)	۲	0	0	0	0
Protecting and enhancing soil carbon stocks on agricultural land	۲	0	0	0	\odot

What should be the role of the land-use sector in reducing emissions and increasing absorptions emissions? For what purposes should biomass be used most to reduce greenhouse gas emissions? How and which sustainability concerns should be addressed?

1000 character(s) maximum

Education, research and innovation

Considering the long time frame of the strategy, and the inherent magnitude of the decarbonisation transition, the central role of accelerating research and innovation for facilitating this transition will be crucial.

How best could awareness be raised to create the right attitude and values/ mind-sets?

at most 3 choice(s)

- At school through education
- Local and regional campaigning
- National and EU wide campaigning

On which sectors should R&D efforts focus primarily in the coming decade to best support the low carbon transition?

at most 6 choice(s)

- Energy
- Industrial processes
- Transport
- **V**
- Agriculture
- Other field

On which cross-sectoral domains should R&D efforts focus in the coming decades? Is there a particular need for large scale deployment of certain innovative technologies? Is there a different role for authorities and private sector in support R&D and Innovation?

1000 character(s) maximum

Research should focus not only on specific technologies, but on their interactions in the system through smart management services and automation. Market models and forms of interaction of market parties play an important role and should be trialled. At the same time, consumer preferences continue to be relevant in the uptake and use of new technologies and services.

Research and development is required also in the area of data security, including both cybersecurity and protection from abuse.

Financing

In many cases, the low carbon economy and energy transition needs high upfront investments with subsequent reductions in operating and fuel costs. In addition, this transition as well as climate change itself will most likely affect the value of existing investments and assets of companies. Finally, to achieve the transition efficiently, the viability and profitability of investments need to be ensured on the long-term. Most of these investments will have to be funded via private finance.

Will the sector that you are active in require significant additional investment in the context of a transition to a low carbon economy?

- Yes
- No
- No opinion / I do not know

For the sector that you are active in, is there a financing gap for making the transition to a low carbon economy?

- Yes
- No
- No opinion / I do not know

Should public sector be more involved in ensuring adequate financing for the low carbon transition?

- Yes, through direct investment
- Yes, through measures ensuring more low cost finance for sustainable investments
- No because of the risk of prompting inefficient investment leading to stranded assets
- No because of crowding effects on other sectors
- No opinion / I do not know

Would you consider that, in your sector, companies are sufficiently transparent about the financial risks they face due to climate change and the low carbon economy and energy transition?

- Yes
- No
- No opinion / I do not know

Meta trends

Do you think the following trends are important to reduce greenhouse gas emissions.

Economic transition towards a more circular economy?

- Positive
- Negative
- Neutral

Digitalisation, including robotisation and artificial intelligence?

- Positive
- Negative
- Neutral

Shared economy?

- Positive
- Negative
- Neutral

Further interdependency of sectors across borders through globalisation?

- Positive
- Negative
- Neutral

Actors

Local authorities such as cities and local communities, as well as other actors such as civil society and the private sector, can play an important role in achieving the energy transformation, reducing greenhouse gas emissions and adapting to climate change. Indeed thousands of cities, companies and citizens' organisations are implementing the low carbon economy and energy transition through projects covering energy, transport, food and waste management, often achieving important local co-benefits related to economic development, health and wellbeing.

Which of these non-state actors do you think will impact most your or your sector's contribution to delivering the EU's ambition to become a low carbon economy?

- Regional government
- Towns and cities
- Businesses
- Philanthropies
- Civil society (NGOs, ..)
- Religious groups

Do you have an example that you think is of particular importance to underline the role of such local and private sector actors in supporting the low carbon economy and energy transition?

1000 character(s) maximum

The evolution of consumer- and prosumer-driven business models has become a major driver for the energy transition and its public acceptance. Various examples exist with different aggregator business models centred around e.g. the provision of system services, Virtual Power Plants or the optimisation of self-generation and -consumption while at the same time reacting to system requirements when market signals are sufficient.

Within this context, a clear distinction of roles of market players and regulated system operators is essential. An involvement of regulated entities into investments and services that could be delivered by the market, could be expected to lead to dysfunctionalities for the market and hold back investment choices and innovation on the side of the market.

Adaptation

The adverse effects of climate change will increase in the coming decades unless strong mitigation policies are implemented globally. In your place of living, which of the following actions do you think will be necessary to prepare for the likely effects of climate change? Please rank each option in the table below from 1 (important) to 5 (not important) to indicate which, in your place of living, you think will be necessary to prepare for the likely effects of climate change (not all options need to be ranked).

	1	2	3	4	5
Scientific research on the local effects of climate change in the place where you live	0	0	0	0	0
Reinforcement of infrastructure (transport, energy, communication networks) to withstand natural disasters	O			0	C
Preparation for floods (water retention, dykes, designated flood plains /areas, restriction of activities in areas at flood risks, floating houses etc.)	0	0	0	0	C
Adaptation of agriculture to the changing climate (e.g. water efficient irrigation, selecting different crops)	0	0	0	0	C
Heat wave action plans	۲	0	0	0	C
Increase of green areas in towns to cope with heatwaves / floods	۲	۲	۲	0	C
Encouragement of water saving and reuse	۲	۲	۲	۲	C
Forest fire prevention (e.g. awareness raising campaigns, forest management)	0	0	0	0	C
Reinforcement and protection of the seacoast	0	0	0	0	C
Early warning systems for natural disasters (heatwaves, floods, forest fires)	0	0	0	0	C
Communication to the public about the need to adapt to climate change	۲	0	0	0	C

Improved insurance products against damage from the effects of climate change	۲	0	0	0	
Better understanding of the security effects of climate change on the EU (e.g. flows of migrants, global water and food scarcity, agricultural trade)	۲		0		0

Which adaptation measures are of particular importance for your sector and why?

1000 character(s) maximum

Specific sectoral questions

These questions are focused on sector specific greenhouse gas reduction options, and as such are primarily directed to sectoral stakeholders.

Reducing industrial greenhouse emissions

Industry has a diverse set of greenhouse gas emissions sources, the majority are linked to energy consumption but also a significant amount of emissions comes from chemical processes, for instance in the steel, cement and chemical sectors.

Industry has a number of mitigation options to reduce its greenhouse gas emissions. These typically involve improved efficiency (e.g. using more efficient products and technologies, reusing waste heat, etc.) and fuel substitution (e.g. electrification of its processes). But it also includes feedstock substitution, be it with bio-material or by employing Carbon Capture and Utilisation (CCU) technologies that see CO₂ emissions being re-used in other production processes. These technologies also often benefit from further integration of energy and industrial sectors.

Please indicate for which sector you see any of the above or other mitigation options of particular importance. Please indicate what your view is in terms of mitigation potential, economic potential and technology readiness. Assess each option as High, Medium, Low or Zero for each criterion and indicate in which year you think the technology would be ready for large scale deployment.

	Industrial Sector	Technology option	Mitigation potential	Economic viability	Technology readiness	Year of large scale deployment
1	Aluminium and other non- ferrous metals	Demand Response	integration of variable low- carbon energy resources	high, depending on market framework	high, depending on market conditions	today, depending on market conditions
2	cooling and refrigeration	Demand Response	integration of variable low- carbon energy resources	high, depending on market framework	high, depending on market conditions	today, depending on market conditions
3	steel production	Demand Response	integration of variable low- carbon energy resources	high, depending on market framework	high, depending on market conditions	today, depending on market conditions
4	water treatment	Demand Response	integration of variable low- carbon energy resources	high, depending on market framework	high, depending on market conditions	today, depending on market conditions
5	industrial heating (e.g. greenhouses)	Demand Response	integration of variable low- carbon energy resources	high, depending on market framework	high, depending on market conditions	today, depending on market conditions
6	chemicals	Demand Response	integration of variable low- carbon energy resources	high, depending on market framework	high, depending on market conditions	today, depending on market conditions

7	pulp and paper	Demand Response	integration of variable low- carbon energy resources	high, depending on market framework	high, depending on market conditions	today, depending on market conditions
8	mineral and chemicals	Demand Response	integration of variable low- carbon energy resources	high, depending on market framework	high, depending on market conditions	today, depending on market conditions
9	glass	Demand Response	integration of variable low- carbon energy resources	high, depending on market framework	high, depending on market conditions	today, depending on market conditions
10	food & beverage	Demand Response	integration of variable low- carbon energy resources	high, depending on market framework	high, depending on market conditions	today, depending on market conditions

Reducing greenhouse emissions from transport

Transport has a number of options to reduce its greenhouse gas emissions. While low- or zero-emission technologies are already successfully deployed for parts of the transport sector (e.g. cars and vans), the technological development is in earlier stages of development or deployment for other parts of the transport sector (e.g. long-haul trucks, aviation or maritime).

Please indicate for which part of the transport sector you see particular mitigation options and their importance. Please indicate what your view is in terms of mitigation potential, economic potential and technology readiness. Assess each option as High, Medium, Low or Zero for each criterion and indicate in which year you think the technology would be ready for large scale deployment.

	Transport Sector	Technology option	Mitigation potential	Economic viability	Technology readiness	Year of large scale deployment
1	passenger cars	electric vehicles with smart charging	double: direct avoided emissions via fuel plus supporting the integration of decarbonised electricity resources and avoiding the need for backup capacities			
2	buses	electrification with smart charging	double: direct avoided emissions via fuel plus supporting the integration of decarbonised electricity resources and avoiding the need for backup capacities			
3	scooters and other two- wheelers	electrification with smart charging	double: direct avoided emissions via fuel plus supporting the integration of decarbonised electricity resources and avoiding the need for backup capacities			
4						
5						
6						

7			
8			
9			
10			

In addition, would you please indicate your choice for the following options that allow reducing the energy consumption and related CO_2 emissions?

For freight transport, would you consider switching from road to alternative modes like rail, waterways or coastal shipping?

- Yes
- No, too slow or complicated
- No, too expensive
- No opinion / I do not know

For first/last mile logistics in urban areas, would you consider switching from road to alternative modes like (electric) cargo bike or similar zero-emission vehicle?

- Yes, I am already doing it
- Yes, in the future
- No, too slow
- No
- No opinion / I don't know

Reducing greenhouse emissions from agriculture

Several options exist to reduce greenhouse gas emissions in agriculture even though the mitigation potential of the agricultural sector, notably related to the sector's non-CO₂ emissions, is seen as more limited than for other sectors. Furthermore, agriculture is a sector that through its impact on land use also will affect how our natural sink, and thus the related CO₂ absorptions, will evolve.

Please indicate which mitigation options are of particular importance. Assess each option as High, Medium, Low or Zero for each criterion and indicate in which year you think the technology would be ready for large scale deployment.

	Agriculture sector	Technology option	Mitigation potential	Economic viability	Technology readiness	Year of large scale deployment
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						

Role of CO₂ removal

The objectives of the Paris Agreement are challenging and many scientists consider that it will be necessary at a certain point to remove a significant amount of CO_2 from the atmosphere in order to stay below 2°C and certainly in case the temperature increase should be limited to 1.5°C. There are a limited number of options to remove CO_2 from the atmosphere.

The removal of CO_2 can be accomplished by 1) capturing CO_2 via natural photosynthesis or artificial chemical processes, and then 2) storing CO_2 in long term geological sites or within biomass and (bio) materials.

Rank from 1 (important) to 5 (not important) on what role you think this removal and storage options can have in the EU to deliver negative emissions taking into account issues such as economic and technical feasibility, storage potential, environmental integrity and social acceptance.

 \bigcirc

	1	2	3
Intensive afforestation	0	0	\bigcirc
Forest and cropland	0		

Capture of CO₂ from the atmosphere

Storage of CO₂

Other

residues

plantations

Woody perennial

Direct Air Capture

	1	2	3	4	5
Carbon capture and storage (CCS) with enhanced oil or gas recovery	0	0	0	0	0
CCS in onshore geological sites	0	0	0	0	0
CCS in offshore geological sites	\odot	۲	۲	۲	0
Carbon Capture and Utilisation (CCU) (long lived products)	0	۲	۲	۲	۲
Increased permanent carbon stock in soils	\odot	۲	۲	۲	\odot
Increased permanent carbon stock in plants	\odot	۲	۲	۲	\odot
Other	\odot	۲	۲	۲	0

What main barriers do you see currently preventing the large scale deployment of CCS, including on how to use it to generate negative emissions? What are the particular challenges related to biomass CCS? What type of CCU (Carbon Capture and Utilization) would lend itself to create long term storage? Are there other technologies that should also be considered? What policies do you think the EU should pursue to better help development and deployment?

1000 character(s) maximum

Additional Comments

If you wish to add further information, comments or suggestions - within the scope of this questionnaire - please feel free to do so here:

1000 character(s) maximum

The consultation's focus appears to be on individual technologies, while it is important to consider the overarching picture of the energy sector. For the energy transition to be both effective and efficient, it has to be much more than the replacement of some technologies by others.

With sector coupling and electrification that build on increasingly decentralised and variable decarbonised energy solutions, the role of flexibility, Demand Response and new forms of interaction need to be reflected in any description and modelling of the future energy landscape. In line with the direction set by the European Clean Energy Package, it appears inconceivable that the role of these solutions would not be reflected as a priority in Europe's 2050 Roadmap.

In addition, you could also upload a document proving further information, comments or suggestions: The maximum file size is 1 MB

Contact

CLIMA-ENER-LONG-TERM-STRATEGY@ec.europa.eu