EVBox: Powering our sustainable future

Bjørn Utgård, VP Sales bjorn.utgard@evbox.com

> EVBOX group

European policy tailwinds

Electric vehicle car incentives

An increasing number of countries have introduced legislation, outright banning sale of ICEs beyond a certain date.

National internal combustion engine sales phase-out policies in effect

Electric vehicle charging port incentives

EU member state EV infrastructure incentive mechanisms

Enter EVBox Group

EVBOX group

We empower forward-thinking

businesses to build a sustainable future

by providing flexible and scalable

electric vehicle charging solutions.

Our offering

Platform solutions allows for bundling of charging software, hardware, and services.

Our full portfolio

Solutions to meet all customer needs

Automotive ٠

EVBOX

GROUP

for tenants

(Automotive)

Exponential shipment and usage growth

	3-2-			
5 YEARS AGO	17 MONTHS AGO	10 MONTHS AGO	END OF 2019	END OF 2020
1 million EVs	2 million EVs	3 million EVs	7 million EVs	10 million EVs

30M

EVs on the road by 2025

Smart charging is key for residential charging

	GERMANY	FRANCE	UK	NETHERLANDS	NORWAY	ITALY
AVERAGE RESIDENTIAL	43 kVA	10 kVA	23 kVA	9 kVA	35 kVA	3 kVA
AVERAGE PEAK	14,5 kVA (34%)	9 kVA (90%)	7 kVA (30%)	7 kVA (78%)	9 kVA (25%)	3 kVA (100 %)
AVERAGE ANNUAL HOUSEHOLD CONSUMPTION	3.100 kWh	5.500 kWh → electric heating	3.900 kWh	3.500 kWh	15.000 kWh → electric heating & heat pump	2.400 kWh → cooking with gas

Source: P3

Residential EV charging: Lots of peak shade available!

Even with 100% EV car fleet, only 3.5% increase in energy demand

Example: French home Average load is just 7% of peak load

Charging an electric car requires <5% of the available time

Huge flexibility of timing

Annual km	15 000
Consumption, kWh/km	0.2
Annual consumption, kWh	3 000
Charging power, kW	11
Hours required for charging	273
Days required	11.4
Commuter (away during the day)	<5% of time
Non-commuter	<4% of time

Charging flexibility

Mapping flexibility by use case

	Residential commuter	Residential non-commuter	Office – commuters
Energy required, kWh/vehicle/year	5000	3000	5000
Sessions required per vehicle per week	2-3	1-2	2
Energy per session, kWh	33-50	30-60	50
Time of day	Evening – Night	Night and daytime	Daytime;
Charging flexibility	Weekly	Weekly	Weekdays
Time available when charging, h	12	20	8
Minimum power, kW	2.8-4.2	1.5-3	6.25
Max power, kW	11	11	22
Min time required, h	3-4.5	3-5.5	6
Flexibility score; time	3-4	4-6	1.3

EVBox Smart Charging capabilities

Circuit power limitation

•Limit the charging power to avoid overloading the electric circuit •Single station or a cluster of stations

Share power among multiple stations

•Clustering stations; Hub keeps total cluster demand below circuit power limitation, while managing phase rotation

1200 AM	12.00 PM	12:00.49
		_

Smart charging profiles

Smart Charging Profiles via OCPPTake advantage of Time of Use tariffs

Dynamic load balancing

Integrated load balancing by means of accessory CT clampsIntegrated with home energy management systems

EVBOX GROUP

Advanced energy integration

•Optimizing charging for energy source (renewables!), energy price, demand response, ancillary grid services, etc.

Key points

Focus on the low-hanging fruits

Huge value in timed chargingV2G much more complex and in most cases a distraction

Open market-place approach

- •Avoid fragmented technical requirements ("command & control" mentality)
- Provide price signals to key stakeholders
- •Standardize communication protocols, e.g., OCPP, OpenADR

Focus on consumer needs!

No hassle experienceTransparencyCost reduction, green electricity

•No impact on vehicle availability

EVBOX group